Efficient implicit scheme with positivity preserving and smoothing properties

نویسندگان

  • Mariyan Milev
  • Aldo Tagliani
چکیده

Using classical finite difference schemes often generates numerical drawbacks such as spurious oscillations in the solution of the famous Black–Scholes partial differential equation. We analyze the fully implicit scheme, frequently used numerical method in Finance, that in the presence of discontinuous payoff and low volatility arises spurious oscillations. We propose a modification of this scheme so that we guarantee a smooth numerical solution, free of spurious oscillations and satisfies the positivity requirement, as is demanded for the financial solution of the Black–Scholes equation. The method is used, within the strategy suggested by Rannacher, only in few initial time steps in the presence of discontinuous initial conditions. As a consequence, although the method is low order accurate, it returns a spurious oscillations free solution. Next, starting from the smooth initial condition obtained, any other family of arbitrary higher order schemes may be used. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An efficient nonstandard numerical method with positivity preserving property

Classical explicit finite difference schemes are unsuitable for the solution of the famous Black-Scholes partial differential equation, since they impose severe restrictions on the time step. Furthermore, they may produce spurious oscillations in the solution. We propose a new scheme that is free of spurious oscillations and guarantees the positivity of the solution for arbitrary stepsizes. The...

متن کامل

A new total variation diminishing implicit nonstandard finite difference scheme for conservation laws

In this paper, a new implicit nonstandard finite difference scheme for conservation laws, which preserving the property of TVD (total variation diminishing) of the solution, is proposed. This scheme is derived by using nonlocal approximation for nonlinear terms of partial differential equation. Schemes preserving the essential physical property of TVD are of great importance in practice. Such s...

متن کامل

Positivity-preserving nonstandard finite difference Schemes for simulation of advection-diffusion reaction equations

Systems in which reaction terms are coupled to diffusion and advection transports arise in a wide range of chemical engineering applications, physics, biology and environmental. In these cases, the components of the unknown can denote concentrations or population sizes which represent quantities and they need to remain positive. Classical finite difference schemes may produce numerical drawback...

متن کامل

Implicit Positivity-preserving High Order

Positivity-preserving discontinuous Galerkin (DG) methods for solving hyperbolic 5 conservation laws have been extensively studied in the last several years. But nearly all the devel6 oped schemes are coupled with explicit time discretizations. Explicit discretizations suffer from the 7 constraint for the Courant-Friedrichs-Levis (CFL) number. This makes explicit methods impractical 8 for probl...

متن کامل

A Positivity-Preserving Numerical Scheme for Nonlinear Option Pricing Models

A positivity-preserving numerical method for nonlinear Black-Scholes models is developed in this paper. The numerical method is based on a nonstandard approximation of the second partial derivative. The scheme is not only unconditionally stable and positive, but also allows us to solve the discrete equation explicitly. Monotone properties are studied in order to avoid unwanted oscillations of t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Computational Applied Mathematics

دوره 243  شماره 

صفحات  -

تاریخ انتشار 2013